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Summary. A mesh smoothing method based on Riemannian metric comparison is
presented in this paper. This method minimizes a cost function constructed from
a measure of metric non-conformity that compares two metrics: the metric that
transforms the element into a reference element and a specified Riemannian metric,
that contains the target size and shape of the elements. This combination of metrics
allows to cast the proposed mesh smoothing method in a very general frame, valid
for any dimension and type of element. Numerical examples show that the proposed
method generates high quality meshes as measured both in terms of element charac-
teristics and also in terms of orthogonality at the boundary and overall smoothness,
when compared to other known methods.

1 Introduction

In the context of numerical simulations, particularly in computational fluid
dynamics (CFD), the concept of mesh quality is always an issue. Smoothing
is a mesh modification method that can be used to increase mesh quality in
many ways. Most often, simple smoothing algorithms are used after initial
mesh generation or topological modifications to an existing mesh, in order
to equidistribute variations of size or shape globally or locally, see [1, 2] for
examples.

In this paper, a new mesh smoothing method based on the minimization
of metric non-conformity is proposed. The presented method, instead of opti-
mizing size or shape functions, directly compares an element’s actual metric
to a desired target metric. These metrics contain, in a single matrix entity,
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details on local size and shape. Since the algorithm is only dependant on a
specified metric, it can be used in different settings such as initial mesh gener-
ation, where the specified metric is constructed from geometric information,
or in a posteriori adaptation, where the metric is computed from a numerical
solution. Assuming that a correctly defined metric is specified, this paper ex-
plains how a mesh smoothing method can be devised to generate high quality
meshes with respect to the metric, while respecting high constraints for the
mesh such as constant number of vertices and constant connectivity between
vertices of the mesh.

The first section of the paper presents some of the works related to mesh
smoothing and discusses why a new smoothing algorithm is needed, that si-
multaneously accounts for both size and shape of elements. The concepts of
Riemannian metrics and non-conformity are explained next, in Sect. 3. The
paper then goes on to explain the smoothing method used to optimize the
non-conformity of a mesh (Sect. 4) and presents the prototype algorithm used
to validate the method. Numerical examples that illustrate the versatility of
the method and the quality of the resulting meshes are presented in the final
part of the paper, and conclusions are drawn.

2 Mesh Optimization by Smoothing

Smoothing methods can be separated into two categories: methods that opti-
mize size distribution and methods that optimize element shape.

In the size distribution methods category, the most common type of
smoothing is certainly Laplacian smoothing, where a vertex is moved to the
center of its neighbors. Examples of other size distribution methods include
physical analogies such as the spring analogy [3, 4] and particle potential min-
imization [5], methods based on the elliptical Poisson system [6, 7, 8, 9] as
well as “center of mass” methods [10, 11]. These methods have been used in
adaptive setting: they all have some kind of weight function or concentration
function that allows for spacing or size specification. Their main drawback is
that they provide very little control over element shape, since they are only
based on the measure of distance between points. They are not appropriate
when orthogonality or other shape properties are desired. Moreover, these
methods are subject to geometric tensions. This means that vertices are at-
tracted in concave corners, and this pulling effect can even result in the mesh
folding outside the geometry, since optimal positioning of nodes is based on
length and is not aware of domain boundaries. This behavior can be con-
trolled using constraints on the optimization process to enforce boundaries,
or concentration functions to reduce tensions. But these processes must often
be adjusted somewhat manually for a given class of geometries. This hints
to the fact that, as they are formulated, these optimization processes do not
entirely incorporate the underlying engineering and computational objectives
of smoothing.
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The second category of methods is shape based optimization. Some of the
best known methods in this category apply a complex optimization algorithm
to reduce a cost function based, for example, on angular criteria [12, 13] or on
shape distortion measures such as those presented in [14, 15, 16]. Most often,
these smoothing methods are used as a final step during mesh generation,
to regulate shape variations from an ideal shape, for example a square for
a two-dimensional quadrilateral element. The resulting meshes exhibit very
smooth shape distribution. The inherent limitation of these methods lies in
the fact that the definition of a perfect element shape is global. When a vertex
is moved, the optimization process tries to satisfy a specific shape which is
the same over the whole domain. These approaches are excellent to correct
unsatisfactory shape distortions in a generated mesh, but lack the capacity to
adapt vertex distribution to complex flow characteristics, that locally exhibit
highly anisotropic features. For this latter purpose, it is necessary to be able
to locally specify the exact shape desired, including anisotropy.

From the previous analysis, it becomes apparent that current methods lack
one of two kinds of control, either on size or shape. In the present work, the
goal it to unify these controls into a single target specification, and devise a
vertex relocation method capable of satisfying at best this specification. For
example, it could be necessary, in the same mesh, to specify highly anisotropic
orthogonal elements to resolve boundary flow near an airfoil while also spec-
ifying, in another region, highly anisotropic elements stretched in a specific
orientation and size to resolve a shock wave. In this case, a variation of a shape
based approach might seem best suited for the boundary layer part, while a
size based approach would probably yield the best results for the shock region.

Two or more smoothing methods can be combined either by successively
applying each one, sequentially or iteratively, or by minimizing a single cost
function obtained as an arbitrary combination of several simpler functions.
However, this type of combined method results in heuristic approaches that
are application and case dependant and thus, not as general as desired. In
the present work, a single cost function is used, rather than an arbitrary
combination of functions, in order to prevent spurious properties in resulting
meshes and case specific modifications to the function.

To obtain high quality meshes with local control of mesh characteristics,
a number of desired properties of the smoothing method have been identified.
The smoothing method should allow to:

1. simultaneously optimize both element size and shape;
2. specify variable anisotropic size and shape targets over the domain;
3. minimize a single cost function;
4. smooth both structured or unstructured meshes in 2D and in 3D;
5. construct non-folding meshes without constraining the optimization process.

The first three properties can be met using a cost function based on a
Riemannian metric, as the next sections will show. Also, since a metric-based
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specification of the target mesh characteristics is independent of element type,
the use of a cost function based on metric comparison ensures that the opti-
mization process be independent of the mesh and element types as well.

Furthermore, the present work aims to develop a general mesh smoothing
method that naturally converges towards non-folded meshes. Hence a formu-
lation of the smoothing problem is chosen that lends itself to unconstrained
optimization. Indeed, it is postulated that for the optimization process to
naturally result in high quality meshes without constraints, essentially entails
that the overall process be specifying a correct form of the mesh smoothing
problem. Here, a correct form of the smoothing problem refers to a formula-
tion where element size, element shape, presence of domain boundaries and
fixed mesh connectivity are intrinsically accounted for.

3 The Concept of Metric and Non-Conformity

The use of a Riemannian metric as a size and shape specification map for
adaptation of a mesh is a central concept to this paper. It has been first
introduced in [17] as a way to describe the size, stretching and orientation of
the mesh elements in a single matrix entity. It has been shown in works such as
[18, 19] to allow the control of mesh characteristics through the specification
of a single tensor defined on the domain.

A specified metric Ms can be constructed from a posteriori error estima-
tion or user defined functions as well as geometric properties. The Riemannian
metric is a general entity that can be used in any adaptation process, inde-
pendent of how it is constructed and what characteristics the user wants to
achieve through the adaptation process.

Smoothing using a metric involves moving mesh vertices so that each ele-
ment be as close as possible to the ideal size and shape, as measured in the
space defined by the specified metric. These ideal elements are the unit side
equilateral triangles or the unit squares in two dimensions and their equiva-
lents in three dimensions. Being of the ideal size and shape in the metric will
result in an element being of the specified size, stretching and orientation,
according to the metric.

The quality of a mesh can be measured using the non-conformity measure
presented for simplices in [20, 21] and extended to non-simplices in [22]. The
central idea is that the actual metric MK of an element K, the metric that
defines the transformation between the element in its present state and the
ideal element described before, must be equal to the specified metric:

MK = Ms. (1)

Two residuals can be computed from Eq. (1) and, when added, result in
the following non-conformity tensor:

Tnc =MKM−1
s +MsM−1

K − 2I (2)
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where Tnc is the non-conformity tensor and I the identity tensor. A norm is
then taken on this tensor to obtain a single non-conformity measure εK . There
are a number of possibilities for the choice of a matrix norm, and effects of this
choice still need to be determined, but the Frobenius norm is used throughout
this paper:

εK = ‖Tnc‖ =
√

tr (TT
nc Tnc). (3)

A global non-conformity measure εT for a whole mesh T has been defined
by Labbé et al [20] as the average of the elementary values:

εT =
1
n

n∑

i

εKi
(4)

where n is the number of elements in the mesh and εKi
the non-conformity

measure of element i. This measure is used in Sect. 5 to compare the global
quality among meshes obtained in numerical examples.

4 Non-Conformity Minimization

Smoothing a mesh using a Riemannian metric as a control function is not a re-
cent idea. A review of some tested methods can be found in [23]. In these earlier
methods, target size and shape are usually achieved by the use of optimiza-
tion algorithms based on geometric properties measured using the distance
between vertices. The distance LMs

between vertices A and B is measured in
the metric space using the vertices known coordinates in geometric space:

LMs
=
(
AB

TMs AB
)1/2

. (5)

Since all these methods use Eq. (5) in the definition of the weights or the
cost function, it means that they are length based. As discussed in Sect. 2,
it is inherent to these methods that they can result in regions of undesired
element concentration, even folding, in highly curved regions or in areas with
strong variations in the specified metric. The smoothing algorithm proposed
here prevents these effects by optimizing a function based on an element based
metric comparison instead of using a measure of edge lengths.

4.1 Choice of the Cost Function

Several cost functions can be constructed based on the elementary non-
conformity measure and the choice discussed here is independent of the res-
olution algorithm presented in Sect. 4.2. For our tests, the cost function f
chosen for optimization is the sum of the squared non-conformity measures of
the elements, as follow:

f =
∑

Ki∈T
ε2

Ki
(6)
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Knowing that the non-conformity measure vanishes for a perfect element and
increases exponentially as the element is modified from its perfect state, this
function will put more emphasis on bad elements than an algebraic average.
The results obtained using this cost function have been compared to those ob-
tained using the simple summation of the non-conformity measure, i.e. taking
εT as the cost function. In general, Eq. (6) generates better results in regions
where the non-conformity measure is quite similar over neighboring elements,
as it increases the distance between the values of the elements non-conformity
measures. Minimization of this function prioritizes reducing distortions of the
worse elements.

The optimization algorithm described in the next section uses Gauss-Seidel
iterations on the mesh vertices. Assuming a fixed position for all vertices ex-
cept one, the optimal position for this vertex V is the position where the
cost function f is minimized. Moving of vertex V only affects its neighbor-
hood N(V ) composed of elements Ki that own the vertex V . The optimal
position (xV , yV ) for vertex V is the one minimizing the contribution of the
neighborhood N(V ) to the cost function f

fV =
∑

Ki∈N(V )

ε2
Ki

. (7)

Figure 1 shows examples of two-dimensional neighborhoods that will be
used for the calculations presented next.

V

E1

E2 E3

E4

V
E1

E2

E3

E4

E5

Fig. 1. Neighborhood N of a vertex V

4.2 Minimization Algorithm

In order to minimize a cost function based on the non-conformity measure, the
algorithm presented by Seveno in [24] has been chosen. This algorithm can be
rated as a “brute force” method, since it is not based on standard optimization
methods, using, for example, computation of gradients. The optimal position
of a vertex is determined by sampling the cost function at various positions
around the current vertex position and choosing the one with the lowest value
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of the cost function. This sampling is performed a number of times for each
vertex, using a dynamic step size in each direction until convergence. The
global algorithm is a Gauss-Seidel scheme where each vertex is moved in an
arbitrary order, generally being the one in which vertices were listed in the
mesh input file, and the new computed position is updated right away to
influence the displacement of the next vertices. The algorithm is presented for
the two-dimensional case for simplicity, but its three-dimensional version is a
direct extension.

Algorithm 1 describes the global smoothing procedure. The maximum
number of iterations is set by the user in order for the code to stop if conver-
gence cannot be obtained. During each global iteration, the algorithm tries
to displace every vertex. The procedure is stopped completely and said to
have converged if the maximum displacement of all vertices is lower than a
user specified value usually around 0.1% of the average edge length of the
neigborhood. This criterion is very restrictive but is necessary in cases where
some vertices need to travel a great distance in the domain. The mesh could
be considered converged by a more relaxed criterion such as the average dis-
placement, but it could happen that some vertices do not completely travel
to their optimum positions.

Algorithm 1 Global Procedure
for iter = 1 to maximum number of iterations do

for vertex = 1 to last vertex do
Move vertex using Algorithm 2
Compute vertex total displacement

end for
Compute maximum vertex displacement
if Maximum vertex displacement < threshold value then

End the global iteration cycle
end if

end for

The displacement algorithm differs from the one proposed by Seveno’s
only in the evaluation of a different cost function and in the use of a local
definition of the displacement steps based on an averaged local element size.
The general idea of the method is described in pseudo-code in Algorithm 2
for the displacement of a single vertex inside one global Gauss-Seidel iteration
over all vertices.

After computing the cost function for the initial position of the vertex,
the algorithm tries to move the vertex to eight different positions around its
current one. It is moved by a distance δ in each direction. This δ starts at
a user defined value δinitial and is dynamically updated at each iteration of
the while loop. After testing the eight positions, the vertex is moved to the
one that reduces the cost function the most and the value of δ is increased
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Algorithm 2 Optimization of a vertex position
δ = δinitial

CFinitial = compute cost function for current position
CFbest = CFinitial

while δmin ≤ δ ≤ δmax do
for i = −1 to 1 do

for j = −1 to 1 do
Test position = (x + iδ, y + jδ)
CFtest = compute cost function for test position
if CFtest < CFbest then

CFbest = CFtest

ibest = i
jbest = j

end if
end for

end for
if CFbest < CFinitial then

Move vertex to (x + ibestδ, y + jbestδ)
δ = c δ

else
δ = δ/c

end if
end while

by a coefficient c to anticipate further movement. If none of the eight tested
positions reduces the cost function, the vertex stays at its initial position and
the value of δ is reduced by the factor c. The reduction of δ ensures that
points closer to the initial position will be tested, to see whether the optimum
position lies between the actual position and the ones previously tested. For
all examples presented in Sect. 5, the following values have been used:

δinitial = 0.1L (8)
δmin = 0.01L (9)
δmax = 0.5L (10)

c = 5 (11)

where L is the average edge length in the neighborhood N(V ).
In order to move vertices on the domain boundaries, a similar algorithm

is used. In this case, the algorithm relies on the parametric definitions of the
geometric entities that support the boundary edges and faces of the com-
putational domain. In these cases, the variable δ is defined in terms of the
parametrization of the underlying entity and the displacement is computed
from the parameter value at which the vertex was initially located. Then, the
positions tested are evaluated on the entity using a modified value of this
parameter.
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This algorithm yields very good results, as shown in Sect. 5. The main dis-
advantage of using this “brute force” approach is that it is slow. The testing of
so many positions has a serious impact on the computing performance. This
is caused by the fact that every time a position is tested, the non-conformity
measure must be evaluated on all the neighboring elements. In order to com-
pute these non-conformity measures, an average specified metric Ms must be
evaluated on each element using numerical integration as discussed in [22].
This operation is very costly because each integration point must be local-
ized and interpolated on the background mesh, which is usually the mesh
before smoothing, onto which the specified Riemannian metric field Ms as
been defined.

The next section shows that, at convergence, this algorithm generates
meshes of higher metric conformity than other previously used methods, such
as the spring analogy or edge length equidistribution.

5 Numerical Examples

This section presents a series of academic test cases for which minimization of
the mesh non-conformity measure using the proposed algorithm yields high
quality meshes when compared to previously published smoothing methods.
The main assumption regarding these tests is that the specified Riemannian
metric used to control the smoothing process can be computed correctly and
adequately represents a user’s needs.

5.1 Optimization of Shape

The first example presented is really simple. It is a rectangle geometry with a
structured 4×4 quadrilateral element mesh. The purpose of this example is to
show how sensitive to shape distortion the proposed algorithm is, compared to
edge length equidistribution. Obviously, the smoothest mesh, without using
concentrations, on this geometry is the one where all quadrilaterals are prefect
rectangles that fit the geometry.

Figure 2 shows the results of smoothing the mesh on this geometry using
edge length equidistribution in the image at left and minimization of non-
conformity measure in the image at right using a uniform Euclidean specified
metric. Smoothing using the first method generates a valid mesh. The ele-
ment are roughly the same size and vertical edges were lengthened so that
edge lengths become more uniform. However, shape is not optimized at all.
The color scale shows the resulting non-conformity measure of each element.
The global non-conformity measure for this mesh is εT = 102.061 and the el-
ementary non-conformity measure εK varies from 41 to 213. By comparison,
the second mesh is much better. Its non-conformity measure is εT = 56.966
and is the same for each element since the specified metric is uniformed. While
not perfect, one must keep in mind that the reference element is a unit square,
not a rectangle. But it can be seen that not only size was optimized but the
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Non-conformity Coefficient
213.02 170.41 127.81 85.206 42.603 0

Fig. 2. Edge length equidistribution versus minimization of non-conformity measure
in a rectangular domain

shape was also respected, yielding elements closer to the unit square than in
the other mesh.

5.2 Smoothing in Curved Regions

One of the main concerns while smoothing meshes is the introduction of geo-
metric tension, as described in Sect. 2. In this section, the example uses a
simple curved geometry in order to show that, compared to other smoothing
methods, effect of geometric curvature on final vertex position is minimal for
metric non-conformity based smoothing.

In this example, the computational domain is a two dimensional duct with
a 180o elbow, as shown in Fig. 3. The initial mesh used for the smoothing
procedure, also shown in Fig. 3, is a standard transfinite interpolation. If this
mesh were to be smoothed using widely used methods such as spring analogy
or standard elliptic smoothing, the results would not be satisfactory because
of geometric tensions in the curved regions. Images of the resulting meshes
can be found in [25].

For methods based on length only, such as the spring analogy, geometric
pulling on the vertices is not negligible. Since there is absolutely no control
on the shape of elements, vertices can be pulled outside the geometry, in
between the two arms of the duct, to reach the optimum positioning, as shown
in [25]. In the case of the elliptic smoothing, it is known that vertices are
naturally concentrated in the concave region while moving away from the
outer boundary. It is not necessary to mention, that even if the resulting
mesh is guarantied to be valid, this type of concentration is not a desired
effect.

These geometric tensions are very hard, if not impossible, to get rid of.
One of the solutions to reduce their effect on vertex positioning is to include
a criteria measuring shape in the optimization process and this is what is
naturally accomplished through metric non-conformity minimization. Figure 4
shows the result of the smoothing of the transfinite interpolation mesh of the
previous figure.
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Fig. 3. U-duct with a 199 × 35 transfinite interpolation mesh

Fig. 4. Mesh smoothed using non-conformity minimization and Euclidean metric

In order to get this mesh, a locally uniform Euclidean target metric was
specified. This metric is isotropic and the main diagonal is uniform and defined
by the local size around each vertex. The smoothing process took 8.87 hours on
an Athlon 2400+ processor to converge in 563 global Gauss-Seidel iterations.
The resulting mesh presents almost no sign of undesired concentrations in the
curved region. The mesh is really smooth in all directions and everywhere
enclosed in the prescribed geometry. Compared to the initial mesh that had
a non-conformity measure of εT = 5.10, this mesh reduced considerably this
measure to εT = 3.61 which is a good quality improvement considering the
fixed mesh connectivity.
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One can also notice the orthogonality of the elements at the boundaries.
This mesh characteristic is very useful in CFD for example, but is not inherent
to methods such as transfinite interpolation. Orthogonality must usually be
imposed through special conditions in optimization functions near the bound-
ary. In the case of non-conformity minimization, it is implied in the specifica-
tion of the reference element. When a boundary vertex needs to be moved, it
is almost certain that it cannot reach the desired element size, being restricted
to sliding on the boundary. In that case, the cost function tends to minimize
shape discrepancy between the reference element and the actual element to
reach the lowest cost function value it can. Since the desired element is a
square, the vertex will move to the position where its two adjacent elements

5.3

The next example shows how the method reacts to a more complex specified
metric. A CFD solution is computed on the same geometry. The mesh used
for this computation is shown in Fig. 5. Knowing that there will be boundary
layers present, the mesh has been concentrated near the boundary before
hands. Nothing else has been done to the mesh in order to not anticipate any
other flow characteristics.

Fig. 5. Mesh provided to the CFD solver and also initial mesh used in the smoothing
algorithm.

Figure 6 shows the flow speed solution obtained on the previous mesh.
Distinct flow characteristics such as the boundary layers and the detachment
of this layer after the elbow are noticeable in the solution. The boundary
layer detachment was not anticipated and should be better resolved with

Smoothing Using a posteriori Error Estimator

become closest to squares, generating orthogonal elements.



Metric Non-Conformity Minimization 283

Fig. 6. A) Isovalues of speed computed on the initial mesh. B) Mesh representation
of the metric computed from the CFD solution

an adapted mesh. The metric is constructed using error estimation on this
solution, resulting in an anisotropic metric field and the initial mesh has a
non-conformity measure of εT = 21.10.

In order to adapt on this solution, the specified metric is computed using an
error estimator based on the second derivative of the speed solution shown in
Fig. 6. This estimator creates an anisotropic Riemannian metric field defined
for each vertex position in the domain that gives the desired size, stretching
and orientation. A representation of this specified metric is given in the form
of an adapted mesh in Fig. 6 that satisfies almost perfectly the metric. Thus,
a high quality smoothed mesh should resemble at best the mesh of Fig. 6 in
terms of the size distribution and element shape and orientation, under the
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constraint of a fixed connectivity. Here, the mesh of Fig. 6 is meant only as a
visual representation of the specified metric and cannot be compared to the
other meshes shown, that have a fixed topology throughout the smoothing
process.

The result of smoothing the mesh of Fig. 5 using non-conformity mini-
mization with the a posteriori metric field yields the mesh shown in Fig. 7,
that has a non-conformity measure of εT = 7.81. This mesh is well adapted to
all flow characteristics, including the detachment of the boundary layer which
can easily be seen. Again, for the same reasons as in the previous example,
orthogonality at the boundaries is preserved, which is good considering the
complexity of the metric specified. This example converged in 18.06 hours and
659 global iterations

Fig. 7. Mesh smoothed using metric constructed from solution

This result can be compared to those obtained using pure spring analogy,
shown in Fig. 8. This later mesh has an average non-conformity measure of
εT = 16.79 compared to 7.81 for the mesh of Fig. 7. It can be seen that com-
pared to non-conformity minimization, it tends to concentrate elements in the
elbow almost to the point of folding outside the geometry. It can also be seen
in the figure that the distribution of elements is not as precise as with the
previous mesh if it is compared to the representation of the specified metric
of Fig. 6. Near the entrance for example, elements are too stretched along
the outer wall of the duct compared to inner wall elements, even though they
should be almost the same size. Moreover, orthogonality near boundaries is
not preserved when using spring analogy compared to non-conformity mini-
mization.

The same type of adaptation can be applied to a mesh with triangular
elements. Fig. 9 shows the result of this adaptation using the same metric
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Fig. 8. Mesh adapted using pure spring analogy

reaching non-conformity measure εT = 2.53. In this case, the original mesh
is the mesh of Fig. 7 where all elements were divided into two triangles.
Again, the result shows a mesh that exhibits the same characteristics as the
representation of the metric in Sect. 6. This shows that a cost function based
on a metric is really independent of the type of element in the mesh and
that the specified metric describes the same objective for all. This example
reaches convergence in 276 global iterations that took 3.46 hours. Notice that
the time is considerably shorter here because there is no need to use corner
sub-simplices on triangles and that the initial mesh was already adapted in
its quadrilateral form.

Fig. 9. Triangle mesh adapted using metric constructed from the CFD solution
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At some points in both cases, mainly in the elbow, right after the boundary
layer section and in the entrance section, some elements seem quite uneven
and irregular, forming an odd wavy pattern. What needs to be determined
here, is if it is the smoothing process or the metric itself that caused this.

In order to determine this, the mesh can be compared again to the one
of Fig. 6. The mesh of Fig. 6 clearly shows, near the elbow a rapid variation
from the smaller elements of the boundary layer to larger elements and then
back to smaller ones. It can also be seen that the metric requires similar size
and shape elements in the entrance section. This confirms that it is a feature
of the specified metric. The answer to this metric from the non-conformity
minimization algorithm is to try to distribute the limited number of vertices
according to the specified variations, and since there are too few vertices to
completely resolve the features in the metric, the result is a wavy pattern that
tries to satisfy the shape specification.

This example shows that the presented algorithm is also responsive to
anisotropic specification of the target size and shape while preserving general
orthogonality at the boundaries. Also, it is important to notice that the re-
sulting meshes are of higher quality than those obtained with other previously
tested smoothing algorithms [25]. The times showed here are very high, this
is simply because the algorithm has not been optimized for speed at the mo-
ment. It uses the restrictive criteria proposed in Sect. 4. Many modifications
can be applied to the algorithm in order to increase its speed. For example,
even close to convergence, every vertex is still considered and tested for dis-
placement. Choosing to move only vertices in regions where vertices moved in
previous iterations would reduce processing time in a significant way.

6 Conclusion

In the context of mesh adaptation, it is necessary to have a smoothing method
that is able to smooth any type of mesh elements in terms of both size and
shape and that allows to locally specify these characteristics in an anisotropic
way. In this paper, a smoothing method based on the minimization of a pre-
viously defined non-conformity measure has been presented to answer this
problem. The strong point of this method resides in the definition of a cost
function based on metric comparison, metrics that contain in a single matrix
entity, information of size, stretching and orientation desired at each specific
location. The construction of this single cost function also ensures that the
minimization is independent of the type of mesh elements.

Numerical examples have shown that smoothed meshes obtained using
the algorithm presented are of high quality and inherently present desired
characteristics such as boundary orthogonality. Also, we have seen that if
the choice of displacement step is small enough, the non-conformity measure
will prevent elements from going into a degenerate state, preventing folding.
Compared to other methods, it does not induce geometric tensions as for
length based methods and provide a way to specify shape as well as size.
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The optimization algorithm used to prototype the approach, which is based
on a brute force approach, is of course not the most elegant way of minimiz-
ing a cost function. While most other optimization methods use some type
of derivative approach to minimize the cost function, of the cost function
and since the cost function based on metric comparison is not easily differen-
tiable, the introduction of a better optimization algorithm, although essential
in practice, is left as future work.
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